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Abstract

This study investigates the attribution patterns
underlying Chain-of-Thought (CoT) reason-
ing in multilingual LLMs. While prior works
demonstrate the role of CoT prompting in im-
proving task performance, there are concerns
regarding the faithfulness and interpretabil-
ity of the generated reasoning chains. To
assess these properties across languages, we
applied two complementary attribution meth-
ods—ContextCite for step-level attribution
and Inseq for token-level attribution—to the
Qwen2.5 1.5B-Instruct model using the MGSM
benchmark. Our experimental results highlight
key findings such as: (1) attribution scores ex-
cessively emphasize the final reasoning step,
particularly in incorrect generations; (2) struc-
tured CoT prompting significantly improves ac-
curacy primarily for high-resource Latin-script
languages; and (3) controlled perturbations via
negation and distractor sentences reduce model
accuracy and attribution coherence. These find-
ings highlight the limitations of CoT prompt-
ing, particularly in terms of multilingual robust-
ness and interpretive transparency. To facili-
tate reproducibility, we make our code avail-
able at https://github.com/Jazhyc/
IKNLP-Attribution.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable versatility across various natural
language tasks (Radford et al., 2019). A significant
advancement in enhancing their complex reason-
ing abilities is Chain-of-Thought (CoT) prompting
(Wei et al., 2022), which guides models to gen-
erate intermediate reasoning steps, often leading
to substantial performance improvements (White
et al., 2024; Wang et al., 2022). Recent studies
show that the generated reasoning chains are of-
ten inconsistent and prone to producing misleading
intermediate steps, thereby casting doubt on their
explanatory reliability (Lanham et al., 2023).

Feature attribution techniques break down a
model’s internal processes by assigning importance
scores on various segments, such as reasoning
steps, to understand their contribution to the fi-
nal answer (Li et al., 2023; Rashkin et al., 2023;
Bohnet et al., 2022). Despite their promise, at-
tribution techniques have seldom been applied to
assess reasoning fidelity in CoT across languages
and at different levels of granularity (step-wise vs.
token-level) (Wu et al., 2023).

In this paper, we investigate the consistency and
interpretability of multilingual LLM reasoning un-
der CoT prompting. We leverage both step-wise
and token-level attribution to uncover model vul-
nerabilities and strategy variations across linguistic
contexts.

Our research objectives are summarized as fol-
lows: (1) analyzing and comparing the importance
of reasoning steps across languages, (2) investigat-
ing how attribution patterns differ between correct
and incorrect predictions to understand variations
in reasoning strategies, and (3) performing token-
level attribution to examine how controlled modifi-
cations to the input affect the reasoning process.

2 Related Work

LLM and CoT LLMs operate as probabilistic se-
quence predictors, estimating the likelihood of the
next token given previous context. While grounded
in principles from information theory (Shannon,
1948, 1951), modern LLMs acquire linguistic and
conceptual representations through massive-scale
training. Despite their success, base LLMs often
produce vague or inconsistent responses (Touvron
et al., 2023).

Instruction tuning further improves LLM behav-
ior. A recent study, Wang et al. (2022), showed that
training with instruction—prompt—response triples
enhances task fidelity and user understanding. Fur-
thermore, Wei et al. (2022) found that prompting
instruction-based models to elaborate on their rea-
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soning process—also, CoT reasoning—before de-
livering a final answer leads to improved accuracy
in the GSM8K dataset. Finally, Lanham et al.
(2023) examined whether CoT reasoning aligns
with the predictions made by LLMs. They tested
robustness to perturbations by adding mistakes in
the reasoning steps. They found that faithfulness to
CoT depends on task complexity and model scale,
with larger models relying less on their own rea-
soning.

Cross-Linguality Performance disparities in
multilingual LLMs stem from uneven language
representation in pretraining data. Well-resourced
languages using Latin scripts (e.g., English, French,
German) consistently outperform underrepresented
or low-resource languages such as Chinese and
Bengali (Chau and Smith, 2021; Ahia et al., 2023;
Nguyen et al., 2024; Ahia et al., 2024). These dis-
crepancies are further amplified by script-related
tokenization inefficiencies, which can hinder down-
stream task performance (Ahia et al., 2023).

Attribution Recently, Hu et al. (2023) demon-
strated that specific reasoning steps in CoT are
more predictive of final answer correctness. While
their findings pertain to natural language outputs,
we investigated whether similar patterns arise in
numerical reasoning. Additionally, Cobbe et al.
(2021b) highlighted the importance of token-level
attribution in generating final answers. Since we
worked with a similar dataset, we further investi-
gated trends in token significance.

3 Method

Our approach combines language model prompt-
ing techniques with post-hoc attribution analysis to
investigate multilingual CoT reasoning in mathe-
matical word problems.

3.1 Language Model

We selected Qwen2.5-1.5B-Instruct (Qwen et al.,
2025) as the language model for our experiments
due to 1) Its small size (1.5 billion parameters),
aligning with our computational resources, 2) its
multilingual support, vital for assessing CoT rea-
soning across diverse languages, and 3) its impres-
sive benchmark scores compared to other models of
similar parameter counts (Qwen et al., 2025). We
specifically used the instruction-tuned variant in the
main report due to its adaptability on complex in-
structions like CoT prompting (Wang et al., 2022).

However, we also report results of the DeepSeek
distilled variant of the model in Appendix C.

3.2 Step-Wise Attribution using ContextCite

To analyze the contribution of each generated rea-
soning step to the final answer, we employed Con-
textCite (Cohen-Wang et al., 2024) due to its flex-
ibility in operating directly at the level of user-
defined text segments, such as the sentences con-
stituting our CoT steps. This contrasts with token-
level attribution methods like Integrated Gradients
(Sundararajan et al., 2017) or attention map anal-
ysis (Bahdanau et al., 2016), which first assign
scores to individual tokens that must then be ag-
gregated (e.g., summed or averaged) to estimate
sentence-level importance, potentially losing step-
specific signal. Furthermore, ContextCite is a post-
hoc method that operates directly on the pre-trained
LLM and its generated output. It does not require
modification of the model architecture or retraining
(Rashkin et al., 2023; Bohnet et al., 2022), mak-
ing it readily applicable to existing models and
responses.

ContextCite determines step importance by treat-
ing the generated reasoning steps as “context” seg-
ments and systematically ablating various combi-
nations of them. For each ablation, it measures the
language model’s probability of generating the orig-
inal final answer given the remaining steps. It then
fits a sparse linear surrogate model using LASSO
regression to predict this probability based on the
presence or absence of each step. The coefficients
of this surrogate model serve as attribution scores,
directly quantifying the contributive importance of
each reasoning step to the model’s conclusion.

3.3 Token-Level Attribution using Inseq

Our token-level attribution experiments use the
saliency feature attribution method (Simonyan
et al., 2014) implemented in the Inseq toolkit (Sarti
et al., 2023). This technique measures how sen-
sitive the model’s predictions are to each source
and target token. Using this method, the attribution
scores are generated by computing the gradient of
the model’s predicted probability for a given output
token concerning the input embeddings.

For our analysis, we need to observe how certain
sequences affect a generated token. The toolkit
handles this through its aggregation function. By
default, this function sums attribution scores along
the final dimension and normalizes these values
by dividing them by the norm of the source and



target attributions. This gives us a meaningful way
to identify which sentences or phrases are more
influential when generating the answer rather than
simply looking at the relationship between individ-
ual tokens.

4 Experimental Setup

This section details the methodology employed
to investigate CoT reasoning across multiple lan-
guages and analyze the contribution of reasoning
steps using attribution techniques.

4.1 Dataset and Preprocessing

We utilized the Multilingual Grade School Math
(MGSM) dataset (Shi et al., 2022), an extension
of the English-only GSM8K benchmark (Cobbe
et al., 2021a). GSMS8K consists of grade-school
level math word problems that are typically solv-
able by middle school students in 2 to 8 reasoning
steps. MGSM contains 250 such problems from
the GSMSK test set, manually translated into ten
other typologically diverse languages. Due to time
and computational constraints, we limited our ex-
periments to five languages: English (EN), French
(FR), German (DE), Bengali (BN), and Chinese
(ZH). We selected these languages because (1) we
were already familiar with English, French, Ger-
man, and Bengali; (2) the Qwen models were exten-
sively tested on Chinese benchmarks (Qwen et al.,
2025); and (3) we aimed to include languages with
diverse scripts for a broader comparison.

Following the CoT practices of Shi et al. (2022),
we employed few-shot in-context learning. For
each target language, we selected all 8 examples
from the MGSM training split to promote CoT
reasoning. Each of these examples adheres to
a specific format: they begin with a language-
specific preamble (e.g., "Step-by-Step Answer:"
in English), followed by the intermediate reason-
ing steps, then a consistent prefix indicating the
final answer (e.g., "The answer is"), and the nu-
merical answer itself. To prepare these examples,
we preprocessed the reasoning steps within them
so that each step appeared on a new line, simplify-
ing the use of structured generation (Section 4.3).
Our evaluations were subsequently performed on
the MGSM test set, which contains 250 distinct
questions per language.

4.2 Language Model and Generation

Generation was performed using the model’s de-
fault parameters without specific tuning, obtaining
answers in a single pass (“one-shot") for each test
question due to resource limitations. We addition-
ally enforce a token limit of 256 for the generated
responses to ensure the quick execution of our ex-
periments.

4.3 Structured Generation

We used structured generation (Willard and Louf,
2023) to enforce adherence to the desired CoT
structure (Figure 8) and enable separation of rea-
soning steps. This technique allowed us to guide
the model’s output by restricting the next tokens
to those that conform to a predefined regular ex-
pression. More information regarding how we use
structured generation can be found in Appendix A.

4.4 Evaluation Metrics and Baselines

Our primary evaluation metric is accuracy, calcu-
lated following Shi et al. (2022). The final numeri-
cal answer is extracted from the model’s output and
compared against the ground truth from the MGSM
test set. A preliminary analysis on the English
dataset was conducted to validate our approach and
establish the impact of CoT and structured genera-
tion. We compared four setups:

1. NOCOT-UNSTRUCT: Model input is only the
question; generation is unconstrained. This
setup is identical to regular prompting.

2. COT-UNSTRUCT: Input includes 8 few-shot
CoT examples and the question; generation is
unconstrained.

3. NOCOT-STRUCT: Input is only the question;
output is forced via structured generation to be
only the final numerical answer. This baseline
was specifically designed to account for the pos-
sibility that instruction-tuned models, such as
those in the Qwen family (Qwen et al., 2025),
might perform implicit CoT reasoning even
without explicit prompting. Preliminary tests
showing verbose baseline answers supported
this concern. By constraining the output to only
the final number, we aim to measure the model’s
performance based purely on its initial under-
standing, preventing contamination from inher-
ently generated reasoning steps.



4. COT-STRUCT: Input includes 8 few-shot CoT
examples and the question; output is forced via
structured generation to follow the CoT format
(Figure 8).
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Figure 1: Preliminary evaluation results on the English
portion of the MGSM dataset using the conditions de-
scribed in Section 4.4.

After conducting a preliminary analysis in En-
glish (Figure 1), we observed significantly higher
accuracy of COT-STRUCT compared to all other
setups. As a result, for the rest of our experiment,
we primarily conduct experiments on the COT-
STRUCT as this allows us to isolate and assess
the contribution of each reasoning step to different
languages vital to fulfilling our research objective.
Additionally, for baseline comparison, we consider
NoCOT-UNSTRUCT as this condition allows us to
measure the aptitude of the model at obtaining the
final answer without explicit reasoning.

4.5 Step-Wise Attribution

After generating the structured CoT responses
across our tested languages, we applied Con-
textCite (Cohen-Wang et al., 2024) to quantify the
importance of each reasoning step towards the final
generated answer. We configured the method to use
32 context ablations (instead of the default 64) per
generated response to balance computational cost
and attribution quality, following recommendations
by Cohen-Wang et al. (2024).

5 Results & Analysis

This section presents the results of our experiments
investigating CoT reasoning in the Qwen Instruct
model across multiple languages using the MGSM
dataset. We first characterize the model’s genera-
tion behavior (accuracy, length) across languages,
then delve into step-wise attribution patterns us-
ing ContextCite, and finally examine token-level
attributions under different conditions using Inseq.

5.1 Overall Results

We report the accuracy of our experimental results
in Figure 2. All languages show improved per-
formance on COT-STRUCT compared to the base-
line NOCOT-UNSTRUCT. This aligns with our ear-
lier analysis conducted only on English during the
setup selection (see Figure 1). Moreover, among all
languages, English achieves the highest accuracy
of 59.2% followed by French (48.8%), German
(37.6%), and Chinese (35.2%) respectively. Ad-
ditionally, Bengali achieved the lowest accuracy
(3.6%), achieving only ~0.8% improvement over
the baseline.

Accuracy (%)

Figure 2: Accuracy results for Qwen Instruct on MGSM
across five languages. Generating only a direct an-
swer (NoCoT-Unstruct) results in low accuracy (<10%).
Introducing structured CoT (CoT-Struct) dramatically
boosts performance, most significantly for English.
However, this improvement trend is minimal for Ben-
gali.

Per Language Generation Length To analyze
the performance trend of COT-STRUCT, we ex-
amine the average token count and number of rea-
soning steps shown in Figure 3. Notably, COT-
STRUCT in Bengali exhibits the highest average
token count (250.7), slightly higher than Chinese
(189.7). Conversely, the average number of rea-
soning steps in Bengali is much lower (1.04). This
discrepancy is expected as Bengali is a non-Latin-
script language, requiring the model to tokenize
words into more sub-words. Additionally, as a low-
resource language, the limited vocabulary available
for the model hinders its ability to predict the next
token and generate valid reasoning steps, resulting
in either failure to reach an answer or the produc-
tion of incorrect ones.

Structured Generation Compliance A prereq-
uisite for conducting our step-wise attribution anal-
ysis with ContextCite is the successful generation
of responses that strictly adhere to the predefined
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Figure 3: Mean token count (left) and reasoning steps (right) produced by Model along with standard errors.

Language Parsed Entries Ratio
English 0.54
Bengali 0.64
German 0.74
French 0.92
Chinese 0.98

Table 1: Success rate of structured generation across
languages, measured as the ratio of responses perfectly
matching the required regular expression format.

CoT structure. We measured this compliance by
calculating the ratio of perfectly parsed responses
per language (Table 1). The results show significant
variation: French (0.92) and Chinese (0.98) demon-
strated high adherence, while German (0.74), Ben-
gali (0.64), and English (0.54) had lower success
rates. Potential reasons for non-compliance include
insufficient allocated tokens for the full format, the
model generating incoherent steps (possibly due
to its smaller size), or deviating from the structure
by embedding the final answer within the reason-
ing chain instead of on the designated line (see
Appendix A for examples of these failure cases).
Generations that failed to be parsed were ignored
for the ContextCite analysis. This differing ability
to follow structured prompts highlights language-
specific variations and limitations in constrained
generation.

5.2 Step-Wise Attribution (ContextCite)

After establishing the performance and generation
characteristics of our model, we apply ContextCite
to analyze the importance of different reasoning
steps. First, we examine which part of the reason-
ing chain typically receives the highest attribution
score. Figure 4 demonstrates the distribution of the
highest-attributed step category (First/Preamble, In-
termediate, Final). Across all five languages, the

final reasoning step (the one immediately preceding
the numerical answer) is most frequently identified
as the most important contributor to the model’s
final answer prediction. This aligns with intuition,
as this step usually involves the final calculation
before reporting the answer.

0.07 0.07

Figure 4: Distribution of the highest-attributed reason-
ing step category (First/Preamble, Intermediate, Final)
for Qwen Instruct on MGSM, based on ContextCite
scores across five languages.

Language Slope (Correct) Slope (Incorrect)
English 5.24 6.54
Bengali 9.31 12.73
German 4.98 5.27
French 4.59 4.47
Chinese 4.96 4.44

Table 2: Slopes of linear regression models fitted to
ContextCite step importance scores against normalized
step position (O=First, 1=Last).

To gain a more granular understanding, we ana-
lyze the trend of step importance scores from the
first step (normalized position 0) to the last step
(normalized position 1). Figure 11 (Appendix B)
visualizes these trends, plotting importance scores
against normalized step position for both correct
and incorrect predictions. We fitted linear regres-



sion models to these points to quantify the trend;
the slopes are reported in Table 2.

For all languages, both correct and incorrect pre-
dictions generally show a positive slope, confirm-
ing that importance tends to increase linearly to-
wards the final steps. Comparing correct versus
incorrect predictions, we observe variations. For
English, Bengali, and German, the slope is steeper
for incorrect predictions (e.g., 12.73 for Bengali in-
correct vs. 9.31 correct), suggesting the model may
rely disproportionately on inaccurate final steps
when it makes an error. In contrast, for French
and Chinese, the slopes are very similar for correct
and incorrect predictions, with the incorrect slope
being slightly lower. Notably, Bengali exhibits
the steepest slopes overall, especially for incorrect
answers, while Chinese shows relatively shallow
slopes, particularly for incorrect predictions (4.44).

5.3 Token Level Attribution (Saliency)

Our initial experiments showed that step impor-
tance increases as we move forward in the reason-
ing chain. To take a closer look at this pattern, we
utilized the Inseq toolkit (Sarti et al., 2023) to get
fine-grained attribution scores for the same Qwen
model. We perform subsequent experiments on
the MGSM training set with 8 items per language.
Given the limited dataset size, we emphasize that
these experiments only serve as a case study and
the results should be carefully interpreted when
extrapolating our observations to more representa-
tive datasets. We restricted our analysis to English,
French, and German because these were the only
languages that met both the model performance
standards and our team’s working capacity. Unlike
the previous approach, which employed few-shot
prompting, we do not include any CoT examples
in our prompt. This is due to the fact that we are
working with the dataset that was previously used
for few-shot prompts.

The study performs controlled evaluations across
three experimental conditions: (1) baseline CoT
generation, (2) the negation condition, and (3) the
distractor condition. The latter two are cases where
the original question has been slightly modified to
assess their impact on reasoning steps. This process
was performed using dependency parsers from the
spaCy library (Honnibal et al., 2020) and then man-
ually corrected. Similar to Lanham et al. (2023),
we investigate the impact of perturbations on CoT
reasoning. However, while prior studies intervene

directly on the CoT steps, we instead perturb the
input question to analyze how these modifications
alter attribution patterns in the generated CoT.

Condition Question

Original Roger has 5 tennis balls. He buys 2 more
cans of tennis balls. Each can has 3 tennis
balls. How many tennis balls does he have
now?

Roger has 5 tennis balls. He does not buy
2 more cans of tennis balls. Each can has
3 tennis balls. How many tennis balls does
he have now?

Roger has 5 tennis balls. He buys 2 more
cans of tennis balls. Each can has 3 tennis
balls. Roger drinks 3 cans of soda. How
many tennis balls does he have now?

Negation

Distractor

Table 3: Examples of original, negation, and distractor
versions of an English question from the MGSM dataset.
Modifications are shown in italics.

For the negation condition, we select a sentence
in the middle of the question and negate its main
verb while maintaining subject agreement and tense
markers. For the distractor condition, we insert an
irrelevant sentence at the penultimate position of
the question. This sentence is constructed using
the first subject in the question. The distractor
sentence, likewise, respects subject agreement and
maintains tense consistency with the rest of the
question. Examples of each question are provided
in Table 3.

For our analysis, we aggregate the attribution
scores for each reasoning step in the generation.
Then, we look at the scores of the generated an-
swer tokens for each of these steps. The resulting
scores indicate how important a given step is for the
generation of that answer. In all cases, the answer
token is determined as the last consecutive digits
in the generation. The heat maps in Figure 5 illus-
trate step-wise importance scores for French and
German in the baseline condition. Supplementary
attribution heat maps can be found in Appendix D.

Our first observation is that the trend of step im-
portance increasing along the reasoning chain also
holds for the aggregated inseq attributions. Some
German generations included more reasoning steps
with two 5-step generations. Notably, these longer
reasoning chains lead to incorrect answers, as in-
dicated by the red colored indices on the y-axis.
French generations tended to have a smaller num-
ber of steps and achieved perfect accuracy on this
set of questions. All the correct answers had a
probability of 1 across languages, indicating high
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Figure 5: Heat maps of baseline French and German
attributions.

confidence in accurate responses. A slight drop in
confidence was observed for some incorrect out-
puts, such as a decrease to 0.994 for the 6th German
generation. The model also assigned a probability
of 1 to the 3rd German generation, even though it
was incorrect.

The heat maps for the negation condition are
featured in Figure 6. We can see that generations
for this condition achieved a considerably low ac-
curacy of 25% by getting 2 out of 8 answers right.
This indicates gaps in the model’s ability to pro-
cess or interpret the full question. The gold circle
to the left of the answer index shows us whether
the generated answer was the same as the reference
answer. This is not desired behavior since a robust
model should be able to recognize that negating
the verb completely changes the calculations to be
performed. Notably, we observe that the model
has been better at recognizing this change when
generating the German answers. Although German
generations manage to deviate from the gold an-
swer, this does not translate to an improvement in
accuracy. A further observation is that, across all
three languages, only generations completing in
four steps led to correct answers.

Figure 7 displays the distractor condition heat
maps. In the distractor condition, a robust model
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Figure 6: Heat maps of English and German attributions
in the negation condition.
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Figure 7: Heat maps of English, and German attribu-
tions in the distractor condition.



should have similar performance to the baseline by
recognizing the added sentence is irrelevant. At
first glance, we note that the longest English gener-
ations with 5 steps were also the ones with incorrect
answers. We do not see the same trend in the case
of German generations, given that there are some
5-step and 6-step generations with the correct an-
swer. Interestingly, the correct German answers in
generations 3-5 were associated with lower proba-
bilities (0.998-0.999), while the incorrect German
answers maintained a probability of 1.

In our three-fold experiment, we have noted that
the last step holds more importance while gener-
ating the answer regardless of the experimental
condition. We have also observed that the num-
ber of steps increases when the question gets more
challenging with the addition of a negation or a
distractor. Particularly for the negation condition,
5 or more steps correlated with an incorrect an-
swer. Interestingly, German-language generations
consistently exhibited longer reasoning sequences
compared to other languages. These observations
suggest that reasoning chains featuring a high num-
ber of steps may generally indicate unreliable out-
puts; however, language-specific behaviors should
be accounted for when making such assessments.

6 Conclusions

This study investigated the faithfulness and inter-
pretability of multilingual CoT reasoning using the
Qwen?2.5 1.5B Instruct model on the MGSM bench-
mark, leveraging both step-wise and token-level at-
tribution. Our results confirmed that structured CoT
significantly improves reasoning accuracy for high-
resource languages like English and French com-
pared to baselines, yet this advantage was markedly
reduced for low-resource, non-Latin-script Bengali,
highlighting persistent challenges related to data
and tokenization (Shi et al., 2022; Ahia et al., 2023).
Step-wise attribution analysis revealed a consistent
trend where the final reasoning step received dis-
proportionately high importance, particularly in
incorrect generations, raising questions about the
genuine faithfulness of the CoT process (Lanham
et al., 2023). Furthermore, the model demonstrated
sensitivity to input perturbations like negation and
distractors, leading to decreased accuracy and less
coherent attribution patterns.

These findings suggest several avenues for future
research. Validation on more complex benchmarks
and larger models is crucial to assess the generaliz-

ability of these patterns. Exploring diverse attribu-
tion techniques and automating analysis pipelines
will enable more robust insights. Specifically inves-
tigating cross-lingual prompting strategies, such as
using English CoT examples to guide reasoning in
languages like Bengali as suggested by Shi et al.
(2022), could offer practical methods to enhance
multilingual reasoning capabilities.

7 Limitations

The conclusions drawn from this study should be
considered in light of several limitations. The
MGSM dataset’s simplicity does not fully test the
reasoning abilities of advanced models. Our find-
ings are based on a single 1.5B parameter model,
and may not extend to larger architectures. The
token-level attribution was based on a small case
study, limiting its generalizability. Furthermore,
our reliance on specific attribution methods neces-
sitates confirmation with alternative techniques. Fi-
nally, variations in structured generation success
rates across languages impacted the comparability
of analyzed samples.
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A Structured Generation with Regular
Expressions

To ensure consistent output formats amenable to au-
tomated analysis, particularly for extracting reason-
ing steps and final answers, we employe structured
generation guided by the outlines library (Willard
and Louf, 2023). This library allows us to con-
strain the language model’s output at each genera-
tion step, forcing it to adhere strictly to predefined
regular expression (regex) patterns. Specifically,
we utilize two primary regex patterns tailored to
our experimental conditions.

The main pattern (Illustrated in Figure 8 guides
the generation of Structured CoT (CoT) responses.
Below is the verbatim regex, followed by a detailed
explanation of its components:

(?:\{answer_phrases[config]\}) \s+

(?P<answer>\d+) [\.\char"0964\char"0965]<|endoftext |>

* Preamble: The pattern begins by match-
ing and capturing the required introductory
phrase into a prefix group. The specific text
it searches for is determined by placeholder
variables that are filled with the appropriate
language-specific preamble (e.g., “Step-by-
Step Answer:") during execution. This substi-
tution makes the pattern adaptable to different
languages. A newline character must follow
the preamble.

* Reasoning Steps: The next pattern captures
the entire sequence of reasoning steps. It re-
quires between one and eight distinct steps,
matching the expected length range for the
dataset.

* Single Step Pattern: The structure defined
for a single reasoning step dictates that it must
start with a literal hyphen. This is followed by
one or more occurrences of any non-newline
character, representing the step’s text. The
step must conclude with a specific sentence-
terminating punctuation mark — the pattern
accepts an English period, a Bengali dari, or a
Chinese full stop by defining them as a set of
allowed characters.

* Answer Prelude: After the reasoning steps,
we capture the specific phrase that introduces
the final answer. Like the preamble, this uses
placeholder variables substituted with the cor-
rect language-specific text (e.g., “The answer
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is”). One or more whitespace characters must
follow this prelude phrase.

* Final Answer: Next, we store the final nu-
merical answer. It specifically requires one or
more digit characters.

e Termination: Finally, the pattern requires
the numerical answer to be immediately fol-
lowed by one of the allowed terminating punc-
tuation marks (period, dari, or full stop). It
also includes an alternative allowing for a spe-
cific end-of-text token to appear right after the
punctuation, ensuring the generation process
concludes cleanly according to the expected
structure.

This detailed structure, leveraging placeholder vari-
ables for language-specific phrases and character
sets for punctuation variants, enables the regex to
enforce a uniform CoT format across diverse lan-
guages effectively.

For baseline comparisons requiring only the fi-
nal answer (NOCOT-STRUCT), a simplified regex
pattern omitted the preamble and reasoning steps,
enforcing only the answer prelude, numerical an-
swer, and termination sequence.

(?:{answer_phrases|[config]})\s
+ (?P<answer>\d

+) [\.a&d’ aAC]<|endoftext |>

Preamble Reasoning Chain Prelude Answer
(?:{preamble})\n(?P(-["\n]+[\.I. 1\n)}{{1,8}})(?:{prelude})\s+(?P\d+)]\.1, ]

Step-by-Step Answer:
_ / - Roger started with 5 balls.
Different across - 2 cans of 3 tennis balls each is 6

Languages tennis balls.
-5+6="11.

The answer is 11.

1to 8 steps

Always a Number

Figure 8: Structure of the model’s answers when using
CoT. The regular expression (regex) used for structured
generation and an example from the training set are pro-
vided. We highlight parts of the regex and the example
to indicate a mapping from each regex group to the cor-
responding text that they capture.

Failure Cases in Structured Generation

Despite the constraints, structured generation can
occasionally fail, typically due to model behavior
conflicting with the rigid format or external factors
like token limits. Figures 9 and 10 illustrate com-
mon failure modes. Successfully parsed entries
were those whose generated output fully matched

the specified regular expression, enabling reliable
extraction of steps and answers for subsequent anal-
ysis. The occurrence rate varied across languages
(Tables 1 and 4).

Figure 9: Example failure case: The final answer (260)
is generated within the reasoning steps, and extra text
follows.

Figure 10: Example failure case: Generation is trun-
cated due to hitting the token limit before completing
the reasoning and providing the final answer in the re-
quired format.

B Context Cite Importance by Step

This appendix section details the analysis under-
taken to understand how the importance attributed
to individual reasoning steps changes depending on
their position within the generated CoT (CoT). The
results are visualized in Figure 11 and summarized
quantitatively in Table 2.

The analysis utilizes the importance scores as-
signed to each reasoning step by the ContextCite
method. To compare steps across reasoning chains
of different lengths, the position of each step within
its specific chain is normalized. This normaliza-
tion converts the step’s index (starting from O for
the first step) into a proportional value between 0
and 1 by dividing it by the total number of steps
in that chain minus one (Step Index / (Step Count -
1)). This normalized position, representing how far
along the reasoning process a step occurs, serves
as the independent variable (x-axis) in our analysis.
The corresponding ContextCite importance score
is used as the dependent variable (y-axis).

Crucially, for each language, the data points rep-
resenting individual steps (normalized position vs.
importance score) are separated into two groups
based on whether the overall reasoning chain led
to a correct or incorrect final answer by the model.
This separation allows for a direct comparison of
importance patterns under successful and unsuc-
cessful reasoning conditions.

Figure 11 visually presents this data using scat-
ter plots. Each point on a plot corresponds to a



single reasoning step. Separate plots (or distinct
visual markers) are used for correct and incorrect
predictions within each language, illustrating the
distribution and potential trends in step importance
relative to position and outcome.

To quantify the observed trends, a linear model
is fitted to these scatter plots for each group (cor-
rect/incorrect per language). The primary metric
derived from this fit is the slope of the resulting
line. This slope indicates the average trend in im-
portance as reasoning progresses from the initial
steps (normalized position 0) towards the final steps
(normalized position 1). A positive slope suggests
importance generally increases towards the end of
the chain, with a steeper slope indicating a more
rapid increase. These calculated slopes, captur-
ing the overall trend for both correct and incorrect
predictions across the different languages, are pre-
sented in Table 2 and are often visualized as trend
lines overlaid on the scatter plots in Figure 11.
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Figure 11: Step importance of Qwen across each lan-
guage where x-axis is the reasoning steps and y axis is
the importance out of 1. The plots in the left depicts
the trend on the correctly predicted samples whereas the
plots on right depicts the trend on the wrongly predicted
samples with m depicting the value of the slope.

C DeepSeek R1 Distill

This appendix evaluates a Qwen2.5 1.5B model
that has been specifically fine-tuned (distilled) us-
ing reasoning-focused data generated by DeepSeek-
R1 (DeepSeek-Al et al., 2025). DeepSeek-R1 rep-
resents a class of models explicitly optimized for
complex reasoning tasks. Its development, as de-
tailed in the source paper, often involves large-scale
Reinforcement Learning (RL) applied directly to
a base model. This RL process aims to incen-
tivize the model to develop sophisticated problem-
solving strategies, such as generating longer chains
of thought, self-correction, and reflection, often
leading to unique reasoning behaviors not typically
found in standard instruction-tuned models. The
model analyzed here inherited reasoning patterns
from this RL-enhanced teacher. Consistent with
the DeepSeek-R1 methodology and data availabil-
ity, our comparative analysis against the baseline
Qwen 1.5B Instruct model focuses only on English
and Chinese.

The effects of distilling these specialized rea-
soning patterns are multifaceted. Task accuracy
on the MGSM benchmark shows a notable diver-
gence: English performance improves substantially
(71.2% vs. 59.2%), while Chinese accuracy ex-
periences a slight decline (31.2% vs. 35.2%). A
significant advantage emerges in output reliability
for English; the model’s adherence to the prede-
fined structured generation format improves con-
siderably, reaching an 82% parsed entry ratio com-
pared to the base model’s 54%. This suggests that
the distillation successfully transferred the capabil-
ity to produce well-structured, step-by-step reason-
ing outputs in English, making its process more
transparent and analyzable. Chinese compliance re-
mains high, though marginally reduced compared
to the base model (88% vs. 98%).

Changes in the generation structure offer fur-
ther clues about the underlying reasoning process
(Figure 12). The distilled model tends to produce
longer reasoning chains, measured by the average
number of steps, especially in English (approx. 6.0
vs. 3.5 steps). Despite this increase in explicit
steps, the total token count slightly decreases for
English (approx. 160 vs. 187 tokens), whereas Chi-
nese sees a small increase in both steps and tokens.
This pattern in English with more steps, fewer to-
kens—might reflect a reasoning style that is more
verbose in its logical progression but potentially
more concise in its language use per step.
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Figure 12: Mean token count (left) and reasoning steps (right) produced by Qwen DeepSeek R1 Distilled. Standard

errors are provided for both metrics.

The analysis of importance attribution via Con-
textCite reveals a fundamental shift in how the
model weighs different parts of its reasoning. Com-
pared to the base Instruct model, the distilled ver-
sion places less emphasis exclusively on the final
step before the answer. This is particularly evident
in Chinese, where the final step receives the highest
attribution score only 42% of the time, down from
81%. Correspondingly, intermediate steps become
relatively more important. This reduced focus on
the final step, coupled with significantly flatter im-
portance slopes from the linear regression analysis
across both languages (Table 5 vs. Table 2), points
towards a less myopic and more holistic reasoning
strategy. Rather than heavily prioritizing the con-
cluding calculation, the distilled model appears to
value the contributions of earlier steps more evenly.

In conclusion, distilling from the RL-enhanced
DeepSeek-R1 model significantly reshapes the
Qwen 1.5B model’s characteristics. It boosts En-
glish performance and structural reliability while
instilling a potentially more detailed and less final-
step-fixated reasoning approach. These findings
highlight how distillation can transfer complex,
learned reasoning behaviors, though the benefits
observed here are most pronounced in English.

Language Parsed Entries Ratio
English 0.82
Chinese 0.88

Table 4: Success rate of structured generation across
English and Chinese for the DeepSeek Distilled model,
measured as the ratio of responses perfectly matching
the required regular expression format (Figure 8).

Language Slope (Correct) Slope (Incorrect)
English 1.66 1.77
Chinese 1.23 1.51

Table 5: Slopes of linear regression models fitted to
ContextCite step importance scores against normalized
step position (O=First, 1=Last) for the DeepSeek Dis-
tilled model on English and Chinese data.
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Figure 13: Accuracy results for the DeepSeek Distilled
model on MGSM across English and Chinese.
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Figure 14: Distribution of the highest-attributed reason-
ing step category (First/Preamble, Intermediate, Final)
for the DeepSeek Distilled model on MGSM, based on
ContextCite scores across English and Chinese.
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This section includes heat maps for unseen lan-

guage x experimental condition pairs. Namely the
English baseline, French negation, and French dis-
tractor heat maps.



